LIMNO Data Sheet Lake Investigations in Michigan and Nature Observations

Date:	Lake:	Group:
Weather/Wave conditions	:	
Turbidity tube:	Secchi disc reading:	_ Turbidity test:
Color: 1 II 111 IV V V1 V11 V111	IX X XI XII XIII XIV XV XVI XVII XVIII X	ax xx xxi
Condutivity:	Nitrates: Phosphates:	
Alkalinity:	pH:	
Algal concentration:		
Macrophyte (plants) obser	rvations:	
Dissolved Oxygen		
Shallow D.O.:	Shallow temperature:% Saturation	:
Deep D.O.:	Deep temperature:% Saturation	:
Sediments found (% of eac	ch): Sand; gravels;	muck
Macroinvertebrates: (chec	k all found in this lake today)	
	cuds 🔲 dragonfly larva 🗖 dam	iselfly 🖵 water boatman
□ backswimmer □ cad	ldistly	
Invasive species found:		
Other observations:		
Number of characteristics	that are typically:	
Oligotrophic (relatively low in plant	 nutrients and containing abundant oxygen in th	e deeper parts)

Mesotrophic _____

(having a moderate amount of dissolved nutrients)

Eutrophic _

(rich in nutrients that support a dense plant population, the decomposition of which kills animal life by depriving it of oxygen)

Lake Investigations in Michigan and Nature Observations (LIMNO) Data Collection

Test	Units	Oligotrophic	Mesotrophic	Eutrophic
Secchi disc / turbidity tube	meters	≥ 4	between 2 - 4	≤ 2
Secchi disc	feet	≥ 7	5 - 6	≤ 5
Turbidity tube	NTU or JTU*	<1.2	1.3 - 3.0	> 3.1
Color	Forel-Ule Scale	1 - 11	12 - 18	19-22
Conductivity	microSiemens	0 - 299	300 - 450	> 450
pH (acid-base)	pH Scale	> 8.0	7.7 - 8.0	< 7.7
Total Phosphorus	micrograms/L	0 - 17	18 - 29	≥ 30
Chlorophyll a	micrograms/L	2 - 7	8 - 11	≥ 11
Termperature (bottom)	degrees C	4 - 10	11 - 15	> 15
Dissolved Oxygen (bottom)	mgl	> 7	4.0 - 6.9	< 4.0
Plankton Density		> 66	30 - 65	0 - 29
Bottom Sediments		Sand	Sand & Organic	Organic
Blood Worms		No		Yes

*Nephelometer or Jackson Turbidity Units

Lake and Pond Color

A variety of natural and human caused conditions can produce color in lakes and ponds. Here is a list of commonly seen colors and causes for those colors.

Wine or yellow/orange or tea color - tannins from leaf fall, especially oaks Murky/muddy - silt/clay from stirred bottom or watershed erosion

Green - algae

Yellow-green - from certain planktonic algae Pea soup green - blue green algae (cyanobacteria) which form scum if overpopulated

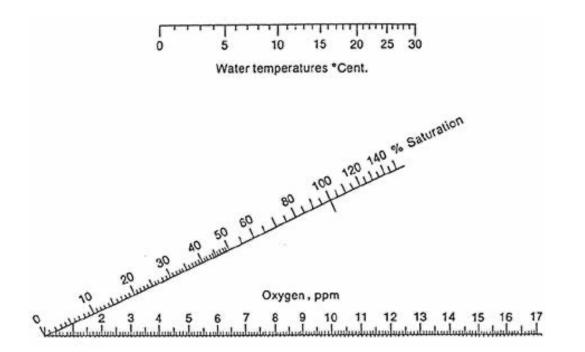
Less common:

Purple/pink/reddish - purple sulfur bacteria				
Red and brown - iron oxidizing bacterial slime or sulfur bacteria				
Black or gray - manganese or reflection pond dye depending on location				
Bright blue - pond dye used in golf course ponds, parks, and fountains				

Surface:

Silvery white (no rainbow appearance) - neuston film; community of microorganisms and bacteria Silvery with rainbow sheen - oil or petroleum

Turbidity Tube Conversion Chart


The Turbidity Conversion Chart converts the measured value in cm to Nephelometric Turbidity Units (NTUs). This is the official unit of measurement to quantify how much light is scattered due to the suspended sediments. You can convert your turbidity tube reading from a height to NTUs using the chart below.

Distance from bottom of tube (cm)	NTUs
< 6.25	> 240
6.25 to 7	240
7 to 8	185
8 to 9.5	150
9.5 to 10.5	120
10.5 to 12	100
12 to 13.75	90
13.75 to 16.25	65
16.25 to 18.75	50
18.75 to 21.25	40
21.25 to 23.75	35
23.75 to 26.25	30
26.25 to 28.75	27
28.75 to 31.25	24
31.25 to 33.75	21
33.75 to 36.25	19
36.25 to 38.75	17
38.75 to 41.25	15
41.25 to 43.75	14
43.75 to 46.25	13
46.25 to 48.75	12
48.75 to 51.25	11
51.25 to 53.75	10
53.75 to 57.5	9
57.5 to 60	8
Over the top	6

Lake Investigations in Michigan and Nature Observations (LIMNO) Data Collection

Determining Percent Saturation of Oxygen

Determine water temperature and oxygen concentration in ppm. Draw a straight line from oxygen level on bottom scale and temperature on top scale. Read the % saturation where this line crosses the diagonal line.

